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Phase-separating binary fluids under oscillatory shear
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We apply the lattice Boltzmann methods to study the segregation of binary fluid mixtures under oscillatory
shear flow in two dimensions. The algorithm allows to simulate systems whose dynamics is described by the
Navier-Stokes and the convection-diffusion equations. The interplay between several time scales produces a
rich and complex phenomenology. We investigate the effects of different oscillation frequencies and viscosities
on the morphology of the phase separating domains. We find that at high frequencies the evolution is almost
isotropic with growth exponents 2/3 and 1/3 in the inertiaw viscosity and diffusive (high viscosity
regimes, respectively. When the period of the applied shear flow becomes of the same order of the relaxation
time Ty of the shear velocity profile, anisotropic effects are clearly observable. In correspondence with non-
linear patterns for the velocity profiles, we find configurations where lamellar order close to the walls coexists
with isotropic domains in the middle of the system. For particular values of frequency and viscosity it can also
happen that the convective effects induced by the oscillations cause an interruption or a slowing of the
segregation process, as found in some experiments. Finally, at very low frequencies, the morphology of
domains is characterized by lamellar order everywhere in the system resembling what happens in the case with
steady shear.
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[. INTRODUCTION hydrodynamics or the existence of a finite time required to
set a linear shear profile in a fluid system. This time, which is
The process of segregation in fluid mixtures is greatlyinversely proportional to the viscosity in a simple fl§2D],
affected by the presence of applied floj#s2]. The domains has a very important role in the case of oscillatory shear. For
of the separating phases generally grow with anisotropic paexample, for sufficiently high frequencies, as it will be
terns that reflect the profile of the velocity field. In the caseshown later, this time is longer than the oscillation period
of polymer blends subjected to a simple shear flow stringlikeand the linear profile will be never set in the system. This
structures are observed aligned along the flow directiomwill have relevant consequences for the evolution and the
[3,4]. In more complex systems such as diblock copolymemorphology of the domains of the separating phases. Actu-
melts with lamellar ordef5] the question of the orientation ally, a systematic study of the dependence of the growth
of the interfaces is still a debated probl¢f8|. The pres- properties on the frequency of oscillations has not been done
ence of the flow has also less expected and obvious consat previous simulations also for the simplest cases without
guences. For example, in phase separation of binary fluidéiydrodynamics. One has also to observe that, differently
while in the absence of flow the size of domains is distrib-from the case with steady shear, due to the fact that the
uted around a single average length s¢lle when a shear average strain is zero in one period of shearing, the effects of
flow is applied, two typical lengths are observed for eachoscillatory shear on the morphology of domains are not al-
direction[10—13. Another peculiar case is that of lamellar ways easy to understand intuitively.
sheared systems where the symmetry of dynamical scaling The effects discussed above can be properly described
[9], generally holding in ordering systems, is foreseen to benly considering the full hydrodynamic equations for binary
violated[8]. Related to the presence of the flow is also themixtures. We have used a lattice Boltzmann metfid8iM)
behavior of the stress response. The nonlinear character f21-23 to simulate the convection-diffusion and Navier-
this response reflects the dynamical evolution of the domaiistokes equations for a binary fluid. We have introduced in
pattern and is of fundamental importance in many technothe lattice Boltzmann scheme, appropriate boundary condi-
logical applicationg14]. tions for a shear flow and we have run our simulations sys-
In this paper we study through numerical simulations thetematically changing the frequency of oscillations for a lim-
behavior of a symmetric phase separating binary mixtureted set of values of the viscosity. We have considered the
subjected to an oscillatory shear fldd]. Experiments on two-dimensional case that is also useful for the comprehen-
this system show that in some cases the growth of theion of the three-dimensional case and has the advantage of
domains is interrupted for frequencies smaller than soméeing less demanding from the computational point of view.
critical value [15,1€], while in other cases domains are  The lattice Boltzmann simulations are based on the dis-
observed to grow on time scales much longer than theretized Boltzmann equations for a set of distribution func-
period of a single oscillatioh17]. Available simulations of tions related to the fluid densities and velocity. The densities
this systen113,18,19 did not take into account the role of and momenta are conserved at each step of the simulation
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thus approximating the behavior of the hydrodynamic equarespect to previous LBNI39], details on the method and on
tions for the fluid. The lattice Boltzmann methods have beerthe implementation are given for convenience of the reader.
found to be very convenient for simulating quasi- The rest of the paper is divided as follows. In Sec. Ill, we
incompressible fluids on very long time scales, as it isillustrate our strategy for the choice of the parameters used in
needed in phase separation problé@25. Another advan-  the simulations; we also discuss the relevant time scales for
tage of the LBM is that, in the implementation of the methodthe system considered. In Sec. IV, we show results of simu-
used in this papdi26], a free energy can be introduced such'a“?”s whe_re t.he growt_h is dommated by inertial effects,
that the fluid relaxes to the equilibrium state determined byVhile the diffusive case is treated in Sec. V. In Sec. VI, we
this free energy. This allows to know accurately the equilib-consider the behavior of the shear stress, and we draw our
rium properties of the coexisting phases whose growth dyconclusions in Sec. VII.
namics is under study.

Before presenting our results it is useful to summarize the Il. THE MODEL
known behavior of two-dimensional binary mixtures . . .
quenched into the ordered homogeneous phases in the ap-Our simulations are base.d on the lattice .Boltzmann
sence of flow. Once domains of the two phases are wefpcheme developed by Orlandiet al. [39] and Swiftet al.
established, experimental and numerical data show that tH40l- In this scheme the equilibrium properties of the system
growth is self-similar with the typical size of domains scal- ¢@n b€ controlled by introducing a free energy which enters
ing with time asR(t)~t [9]. The growth exponent de- properly into the lattice Boltzmann model.
pends on the physical mechanism responsible for the phase
separation. A simple scaling analysis of the Navier-Stokes A. The lattice Boltzmann scheme
and of the convection-diffusion equations shows that three

regimes can be found corresponding to the role played b¥ice' As o ; ; L

) . ; . : A square lattice is used in which each site is connected
m : rgg%r;??grgﬁrze;s;;\I;erﬁgéﬂz&zg. d?f}uh;g/zvrﬁggﬁ?r/ﬂsmwnh nearest and next-to-nearest neighbors. The horizontal
and the growth exponent is= 1/3[29]. When hydrodynam- and vertical links have lengthx, the diagonal links/2Ax,

s becomes relevat he Ia)—tor () 1 ar ex. M4 bSG he space step, Tuo ets of ibuton functons
pected depending on whether viscous forces or inertial ef>'* gilr,

fects dominate, respectivelj27,28. In real systems, time t. Each of them is associated with a velocity veatar

S ; Defined At as the simulation time step, the quantiteat
however, the situation is more complex. The physical mecha- ; . '
P phy re constrained to be lattice vectors so tegt=Ax/At=c

nism responsible for the viscous growth is not operating i . S

the two-dimensional cas@0] and, indeed, this regime has ' 1 =1 (east direction 2 (north), 3 (wesd, 4 (south) and

never been observed in simulatiofst]. la|=+2c for i=5 (north east 6 (north wes}, 7 (south
The effects of a steady shear flow on the growth lawawesd, 8 (south eagt Two functionsfo(r,t) andgo(r.t), cor-

previously discussed have been considered in many papef§SPonding to the distribution components that do not propa-

In the diffusive case, analytical calculations based on a selfdat® €=0), are also taken into account. They evolve during

consistent approximation show that the typical size of do{he time stepAt according to a single relaxation-time

mains should grow in the direction normal to the flow as inBoltzmann equatiof41,42;

the case without shear, while the growth exponent in the flow 1

direction is equal to that in the transverse direction aug- fi(r+gAt,t+At)—fi(r,t)y=— =[f,(r,t)— fS%r,t)],

mented of ond11,31]. This result cannot be easily checked T

by numerical simulations due to the presence of finite size @)

effects that become very soon relevant in the direction of the

flow affecting the value of the exponerits2]. The full prob- 1

lem with the Navier-Stokes and the convection-diffusion 9i(f T&@ALIHAD=gi(r,t)=——[gi(r,) —gr(r,t)],

equations has been considered in REZS,32—36, but also ? 2

in this case reliable results for the growth exponents are not

yet available. Actually, the true existence of an asymptotiGyhere r and 7, are independent relaxation parameters, and
growth regime in alternative with a stationary state with ageq(r ty andg®9(r,t) are local equilibrium distribution func-
finite transverse size is a question still to be clarifigd,25.  jons, The distribution functions are related to the total den-

On the other hand, morphological properties are reasonabgﬁty n, to the fluid momentunmv, and to the density differ-
well understood. Domains are stretched by the flow and thi%ncego through

induces a coagulation of domains in the flow direction but

also ruptures in the bicontinuous netwdik,3§. As a re-

sult, domains assume the typical stringlike character with the n=> f,, nv=>, fie, ¢=>, 0. (3)

already mentioned complication that the size of domains is [ [ [

distributed around two typical length scales for each direc-

tion. These quantities are locally conserved in any collision
The lattice Boltzmann scheme used in this paper is deprocess and, therefore, we require that the local equilibrium

scribed in the following section. Due to small variations with distribution functions fulfill the equations

The lattice Boltzmann scheme is based onB#Q9 lat-
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n
Ei (fleq_fl):()iEI fieq:n’ D|:4'DII= DI|:_41 (12)
8c
Z (7 gi):O:Ei o= Pas™ 2 Posdap
G1,ap=4G)) ap Gll,aﬁ:T- (13
2 (fF-f)g=0=3 fPle=nv. 4)

The expansion coefficients for tigg® can be obtained from
the previous ones with the formal substitutions-¢ and
Follp_vving Re_fs._[3934q, the_higher moments of the local P.s—TAud,s. The quantitie®,; andA u, which appear
equilibrium distribution functions are defined so that the con4n the coefficients of the equilibrium distribution functions,
tinuum equations pertinent to a binary fluid mixture can becan be calculated from a suitable free energy.
obtained and the equilibrium thermodynamic properties of
the system can be controlled. We define . _
B. The equilibrium properties

The free-energy functional used in the present study is

Ei %€ 5= C%P 5+ NV 04, (5)
1 a b
]-"=j dr §n|n n+ Egoz-l- Z(p4+g(V(p)2 . (19
E gieqeia:(Pva! (6)
i

The term inn gives rise to a positive background pressure

and does not affect the phase behavior; it is required in the

E gieqeiaeiBZCZFA,u,5aB+ YU g, (7) lattice Boltzmann approach, as it will be seen later. The
! terms ing in the free-energy densitf(n,¢) correspond to

the usual Ginzburg-Landau free energy typically used in
studies of phase separatip28]. The polynomial terms are

related to the mobility of the fluid. We want to stress that Werelated to the bulk properties of the fluid. While the param-

L . . . . eterb is always positive, the sign af distinguishes between
are considering a mixture with the two fluids having the.adisordered4>0) and a segregated mixtura<0), where

same mechanical properties and, in particular, the same vis- I T . .
cosity. Constrain{6) expresses the fact that the two fluids %V.VO pure phase; witlp == . a/b coexist, Wg will con-
sider quenches into the coexistence region with0 andb

have th me velocity. The local ilibrium distribution
ave the same velocity. The local equilibrium distributio —a so that the equilibrium values for the order parameter

functions can be expressed as an expansion at the second . . ! .
order in the veIocitwp[39 40; P are ¢o==*1. The gradient term is related to the interfacial

properties. The equilibrium profile between the two coexist-

whereP ,; is the pressure tensaku is the chemical poten-
tial difference between the two fluids, aihdis a coefficient

fFEU_ A 4 Cop? ing bulk phases ig(x) =tanh2/& giving [43] a surface ten-
0 T T sion
fP9= A +Bv 8.+ Cio2+Dv,0 48 .85 5
+G|,aﬁeiaeiﬁa i:1!21314; U:§\/_2aK (15)
eq_ + 4 24 A ] ) )
= At Bivagiat CioT+ Duvav s8iatis and an interfacial width
+Gyi,ap8ia8ip, 1=5,6,7,8, (8)
2k
and similarly for theg’®, i=0, .. .,8.Relations(4) and(5) £=2 —a (16)

can be used to fix the coefficients of these expansions. A

suitable choice of the coefficients in expansig8sis ) _ )
The thermodynamic properties of the fluid follow from

Popdup the free energy14). The chemical potential difference be-
Ap=n—20A,, A=4A,, A = oq (9  tween the two fluids is given by
n A= —aprbei— k2 (17)
B,=4B,, B,=——, 10 K= 5o aPThe —kV e,
| 1 1 1202 ( ) (2]
5 The pressure is a tensBr, ; since interfaces in the fluid can
Co=— _n' C,=4C,, Cy=- L' (11)  exert nonisotropic forceft4]. The diagonal parp, can be
c? 24c? calculated from Eq(14) by using thermodynamics relations,
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5}' SF 1 a , 3b wherelL is the lattice sizey, is the amplitude of the shear
Po= 5n to~— S —f(n,p)= —n+ PR + —<P rate, andf is the frequency of the oscillatory shear. Consis-
tency of Eqs.(21) gives

K
—xe(V2e) =5 (V)2 (18) n="fo(t)+ (1) +Fa(t)+2[Fo()+ () +Fs(D)]. (22
The system of Eq921) reduces to two equations with three

In deriving the pressure tensé,;, one has to ensure that ynknown variables. To close the system of equations the
P.p obeys the condition of mechanical equilibriumP,s  pounceback rulg49,50 is adopted for the distribution func-

=0 [45]. A suitable choice is tions normal to the boundary. This corresponds to imposing
thatf,(t)=f,(t). In order to preserve correctly mass conser-
Pap=Pobupt Kdo@dge. (190  vation we add a further constraint. Mass will be conserved if

the total densityn on each site is equal to the quantftvy
The presence of the term depending wrin the free-  given by the sum

energy density allows to recover the known results of the
D2Q9 lattice Boltzmann model for a single fluid. Indeed, n(tt At)
whena=b=«k=¢=0, expansion coefficient9)—(13) be-
come those of th®2Q9 model[46] and the pressure tensor =fo(t=AD +T5(t— A+ fa(t— AL+ fe(t—AL),
(19) reduces to the scalgr=(c?/3)n, where we have also FE (1) + F5(t) + Fo(t) + Fo(t) + Fa(t), (23
included the factoc? appearing in the rhs of E@5). This is
the pressure for an ideal gas with speed of sotywdc/\3  where quantities at timet ¢ At) refer to the previous time
[46]. Let us observe that the value of the numerical factor instep and have not been propagated over the lattice. In order
front of nInn in the free energy depends on the topology ofto [impose the constraint that on all the boundary sites

the lattice and the spatial dimensiop]. =n, we have to introduce an independent variable in the
It has been shown in Ref$39,40, using a Chapman- gy qtem of equations. We have chodgft) since it does not

Enskog expansio_[AB], that the above descri_bed Iatticg Bolt- propagate{S 4]. The solutions of the system of Eq&1) and
zmann scheme simulates, at second ordéxtinthe continu- n=n are

ity, the quasi-incompressible Navier-Stokes, and the
convection-diffusion equations with the kinematic viscosity

v and the macroscopic mobilit given by fo(r,) =n—=[f1(r,) + fa(r,0 ] = 2[f5(r,t) + f5(r,t)

+fe(r,H)],
C2 2 1
— 1 —
- 1
C. The shear boundary condition fa(r,t)="fg(r,t)— E[fl(r,t)—fg(r,t)]
In order to enforce a shear flow on the system, we have
used the following scheme. We assume that the shear flow is N 1 L-1 2mft)
directed along the horizontal direction. Boundary walls are 2" 2c cog2mft),
placed on the upper and lower rows of sites. Let us consider
the upper wall(similar considerations apply to the lower 1
wall). After the propagation the distribution functiofig(t), f2(r O =1fs(r,0)+ 5 [f2(r,) = fa(r,0)]
f1(t), f5(t), fo(1), fg(t), andf;(t) are known on each site,
while f(t), f4(t), fg(t) are not. One uses EgR) to deter- 1 L-1
mine them as well as. Requiring that the wall velocities ~ 5NY0 5 cod2miy). (24)
W,y i = vo(L —1)/2cos(Zrft), wy ;=0 are imposed to the
fluid, we can write A similar treatment is required for thg;(r,t). With this

o choice the proper momentum at the boundary is achieved. At
F2(O+ 14O + T =n=[To() + T2(1) +T5(1) +T2(1) this point the collision step is applied to all sites, including
+fg(t)+f3(t)], the boundary ones. By this procedure, once the system has
been initialized, the application of the propagation and colli-
sion steps goes on preserving mass and momentum conser-
cod 27ft) vations and implementing the correct velocity values on the
boundaries, as it has also been verified numerid@i).

Finally, we also require that the two fluids, which, as al-
ready stated, are assumed to have the same dynamic and
static properties, have a neutral wetting with walls. This can
fo(t)+ f4(t) + fg(t)=fg(t)+fo(t)+fg(t), (21 be enforced at each time step by the condition

fg(t) —f7(t)=ny >

—[fa(t)—f5(t) +f5(t) —fg(t)],
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TABLE I|. Parameters used in simulations and corresponding time scales. The shear tinTe, ssalgual
in all runs to 200.

Set At TR TD TO - a.,b k T F ag

1 0.2 189720 1224.8 4815.8 128204 8x10°° 0.5210 40 9.4%10°°

2 0.2 25638 1224.8 1.9510° 1.252<10°* 8x10°°> 0.6554 40 9.4%10°°

3 0.2 2563.8 12248 1.9510° 1.252<10°* 8x10°° 2.0540 40 9.4%10°°

4 1 13280 5895.5 2024.9 1.0420°% 6.67x10°°3 2 0.5 7.86<10°3

5 1 13280 7863.4  3599.9  7.8%30°° 5x10°° 2 0.5 5.8%10°3
m-Ve=0, (25) . PARAMETER SELECTION AND RELEVANT

TIME SCALES

wherem is a unit vector normal to the walb1,52. This We have studied the effects of the applied flow by chang-
corresponds to fixing the gradient of the densityon the ing the frequency of the oscillations at fixed values of the
walls so that the angle formed by the interfaces between thparameters,b, «,7,I'. This has been systematically done
two fluids with the walls stays at a constant valuend® rad.  for the cases reported in Table I. We have kept the rate
This completes the description of the model used in thdixed in such a way that the interfacial width is always of
present work. about 3 lattice spacings. We fixed =1 with I controlling

064 4
' ——1=27000 06{ ——1=40000 i
1 . |----- 1=27250 Y R t=42500
o4d - |- 1=27500 J A [pssen 1=45000
. e 1=27750 044 . ———— 1=47500 .
1 ¢ SET 1,f=10° , SET 1,4=10*
021 T 02 A |
1 [] l ] . .
o o.o. > ! o 0.0 -
L)
0.2 i -0.2- J
-0.4- v -0.4- J
06. - 0.6 -
450 -100  -50 0 50 100 150 450  -100  -50 0 50 100 150
y y
1.0 ' r T T 1.2 ' T T
0.8 ——1=19000 ] —— 150000
] I [ 1=19250 !l 1 |----- 1=52500
0.6. P [T t=19500 _ oad | t=55000 J
{ ——— 1=19750 J ———— 1=57500
0.4- . SET 3,i=10° . .. SET 3,i=10"
0.2 L 0.4 J
. 0.0- 4 3
> o o
-0.2- < > 0.0- J
0.4 4
-0.6 4 < -0.44 J
0.8 J
'1 .0 T T T T T -0.8 T T T T T
150 -100  -50 0 50 100 150 450  -100  -50 0 50 100 150
y y

FIG. 1. Horizontal velocity profiles taken at the central vertical line of the system. The profiles are recorded at the beginning, half, first,
and third quarters of the period considered.
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030 ————r————1———————

1.2
1 ——t=1000 o
0.254 - t=5000 o I log. R
t=15000 - oo | " S
0.20 —omo- - _ | -
1=27000 | o0 - SET 1,PERIODIC
1 seT1.4=10 . 1]
0.151 o 0.6 ]
0.10-
> | 0.3 |
0.05-
1 00 T T T T !
0.004 2.0 25 3.0 3.5 4.0 4.5 5.0
] log, t
-0.054 0.8 : : 9‘° . .
'0-1 0 T T T T T T T 0.7-.
110 112 061 '1°/ng
y 0.5- SET 3,PERIODIC 1

FIG. 2. The evolution of the horizontal profile for the case and %47
at the times reported in the inset. The main frame is a magnificatiorg.3
of the profiles in the region close to the upper wall.

0.2 ]
0.1 J
the value of the macroscopic mobili¢20). The amplitude of 0.
the shear rate is equal in all runs to the vajye= 0.005. The 20 25 30 3.5 4.0 45 5.0
size of the lattice, if not otherwise stated, lis=256. In log, t
the following all the quantities are measured in unitsAof 10
andAt.

. FIG. 3. Evolution of the domain size in cases without applied
In the absence of shear, as observed in R&5,53, the flow with periodic boundary conditions. The size of the lattice used

behavior at late times of a viscous phase separating binary \hase simulations is = 512.
mixture can be described in terms of adimensional temporal
and spatial quantities. Indeed, from the set of macroscopic
parametersy,o, v, it is possible to define only one unit of and the periodT=f"! of a single oscillation. The ratio
length (Lo=nv% o) and one of ime To=n?v*/¢%).! Then,  T,/Ts can be interpreted as an indicator of the relative rel-
in a regime of dynamical scaling with the size of domainsevance of hydrodynamic and imposed velocities. Finally, we
distributed around a single typical length, when diffusion isconsider the quantitylg=L?/(v7?) which is the leading
negligible, it is possible to build up only one spatial and onecontribution to the relaxation time for a steady shear profile
temporal adimensional variables. These variables have beéma simple fluid[20]. This time can be taken as indicative of
used in comparing results of simulations performed with dif-the relaxational velocity processes also in the case of a phase
ferent parameters and methd@%,53. separating binary mixtur€34]. In Table | the time scales
The same use of adimensional variables can be done igorresponding to the sets of parameters indicated are also
the case of very high viscosity when the evolution equationseported.
reduce to a convection-diffusion equatiof, = £3/(0 o) is The relevance of the ratidg/T for the problem consid-
the time scale for diffusioh28]. ered in this paper appears clearly from Fig. 1. Here the hori-
In the case with oscillatory shear the situation is morezontal velocityv , profiles for the vertical cross section in the
complex because various temporal scales can be defined andiddle of the system are reported at a late stage of simula-
in general, one does not expect dynamical scaling. Due tgons for cases 1 and 3 of Table | and for two different fre-
these reasons we have preferred to show our results in terggiencies. We checked that these results are independent of
of original quantities. However, it remains useful to considerthe particular vertical line considered. For each case the ve-
the relevant time scales because they can give informationgcity profile is plotted at the quarters of one period. For the
on the physical mechanisms responsible of phase separatigat of parameters 1 with=10"2 the horizontal velocity in-
and on the role of the applied flow. duced by the shear is very small in the bulk of the system
We have already defined the quantitiesand Tp which  and comparable with the average of the modulus of the ver-
do not depend on the applied flow. Then there are the timgcal velocity v,. With the same parameters, when the fre-
Ts=17, ", related to the amplitude of the oscillating shear,quency decreases tb=10"%, the complex nonmonotonic
behavior of the horizontal velocity is more evident, is
much larger than hydrodynamic velocities in a relevant por-
These expressions do not depend on the spatial dimension.  tion of the system close to the walls where it also assumes
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1.2 T T T T T T T
."/ / 124
1.0+ A l
."} I°g1oRx
log, R, ’ 104 | ----- log, R,
osd |- lo 91oRy . 1 1 e log, R
........ |°g1°R . 0.8 ......._2/3 "
—2/3 R ] SET 1, f=10
0.6+ SET 1, {=10° S/ 1 ‘
P 0.6 / 4
0.4 R . ] ‘
.l 0.4 4
0.21 1 0.24 . ]
| I L/
0.0 1 0.0 T T r ' T
05 10 15 20 25 3.0 35 40 45 5.0 15 20 25 3.0 3.5 40 45
log, .t
144
1.24
1.04
0.84
0.6
0.4
0.2 4
0.0 4
e e e R m e S 9.2 4—~+—vrrm-p-o--r--rp—mer—vp—v—v——v——v
2.0 25 3.0 3.5 4.0 45 5.0 3.0 33 3.6 3.9 42 45 48

log,t log, t

FIG. 4. Evolution of the horizontal, vertical, and spherically averaged size of domains in double logarithmic scale. The straight dashed
lines have the slope written in the insets.

opposite directions to those imposed by the walls. This pesaw that this problem becomes more serious whands to
culiar pattern of the velocity profiles has consequences fothe limit 1/2. The problem of stability is connected to that of
the behavior of the stress, as it will be seen later. When thguaranteeing as much as possible the incompressibility of the
viscosity becomes higher, like for the other set of parameterguid. Compressibility errors, which go like/(cs)? [54], can
used in F|g 1, the relaxation t”ﬁEQ decreases. Then, for the be reduced by either increasing, which would require to
same frequencies, the velocity in the bulk of the system isequceat, or decreasing the magnitude afb, x [53]. We
larger and aImoit triangular oscillating profiles can be obyave followed a mixed strategy by keepinkx=1 and
served atf=10"". We have also checked that each set Ofcpanging the values aft as reported in Table I. In this way
four profiles of Fig. 1 is typical for the parameters con3|derequ were able to run simulations long enough to study the

in th_e sense that only small variat_ion§ in the pattern of thesﬁhase separation of binary mixtures in different growth re-
profiles, probably due to the evolving interface configuration,

can be observed during the simulation. Figure 2 shows inhdimes implicitly assuming that the evolution of the system is

velocity profile at the same phase of four different periods apOt affected by the possible occurrence of the numerical in-

initial and late stages of the simulation with set 1 of param—Stab'“ty' A comment to the results of Reb3] is that the

eters af =10~ 3. Small quantitative changes can be obserVed'ntroduction of walls for the shear boundary conditions
in the region close to the walls, while the general shape ofi@kes worst the stability properties of the LB scheme.

the profile always remains the same.

Finally, we consider the question of the stability of the
lattice Boltzmann scheme used in this work. As observed in IV. INERTIAL ORDERING
Ref. [53], this lattice Boltzmann scheme is intrinsically un-
stable. At unpredictable times of the simulation pressure In two-dimensional quiescent systems, as discussed in the
waves grow up indefinitely in very few iterations making not Introduction, two growth regimes with different power-law
possible the continuation of the simulation. As expected, wdehaviors for the average size of domaiR@) have been
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t = 1650 ) = t = 1250\,0 t = 25000

t = 37500

FIG. 5. Configuration of domains with the corresponding struc-
ture factor at two times in a run with parameter set 1 of parameters

at the frequency =10 2. The variable, (horizontal axi$ andk, 0.8 - y : : T
(vertical axig vary in the interval [—5/167,5/16w] and 064 ——1=12500 ',f- ]
[ — 7/8,7/8] at timest= 1650 andt=5900, respectively. \ === =1=25000 i
04f Y |z e
----- =! !
clearly identifiec? In this section we will consider the effects 0.2- '}) SET1,{=2x 10° I,i i
of the o;cﬂlatory shear on the case of phase separation drive 0.0. \}: ~ P\ ]
by inertial growth. We will mostly refer to case 1 of Table | > - Nl
for which, in the absence of flow, the behavior Rft) is -0.2- ’: Voo
shown in Fig. 3. The quantitR(t) has been calculated as the 044 1 v
first momentum of the structure factor, that is, 06 : \‘
064 } _
'0.8 T T T T T
dk C(k,t) -150 -100 -50 0 50 100 150
R(t)= : (26) y
f dk k C(k,t)

FIG. 6. Four configurations and corresponding velocity profiles
whereC(k,t) is the spherical average of the structure factorin & run with periodT =50 000.

T (ol L The effects of the oscillatory shear on the growth of the

Clk={eke(~kD), @7 domain size for case 1 of Table | can be seen in the panel of

and(-) is the average over different histories. We found aFig. 4 which summarizes our results for a range of frequen-
growth exponentx=0.62+0.022 in the following, all the cies from f=10"° up to f=5X10"° We measure the
estimates of the growth exponemtare affected by the same spherical averagB(t), the domain size in the flow direction

error = 0.02. The small discrepancy from the expected value

a=2/3 typical for the inertial growth can be attributed to a J dkC(K,t)

small violation of dynamical scalinfb5]. R (t)= (28)

fdﬁmm&m

2Growth regimes with exponent 1/2 have also been reported; their ) )

existence at asymptotic times is still under debate. For a discussiofnNd the analogR, for the shear direction. The valug

see, Ref[24]. =103 is the highest frequency where an anisotropic behav-
3For a more accurate measure of this exponent we have usd@’ can be observedR and R, evolve with an exponent
larger lattices with. =512. which is equal to 2/3; the change of the slope of;}ggand
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slightly anisotropic evolution af=10"2 can be illustrated
from the two configurations shown in Fig. 5 with the corre-
sponding structure factors. The circular shape of the structure
factor att=1650, whose radius is of the order of the inverse
of R(t), reflects the isotropic configuration of the concentra-
tion field at this time. At =5900 the slight prevalence of the
peaks ak,=0 corresponds to the presence of a recognizable
amount of domains aligned with the flow close to the walls.
In the following of this simulation the almost isotropic char-
acter is conserved as it has been checked looking at the con-
figurations.

At the frequencyf =10 * the morphology of domains is
more affected by the applied flow due to a bigger region of
the system where the horizontal velocity is significantly
larger than the typical hydrodynamic velocities measured
along the vertical direction, see, Fig. 1. As a consequence,
lamellas can be observed close to the walls while the growth
keeps a more isotropic character in the middle of the system.
Figure 6, at the frequenci=2x 10>, gives an example of
this behavior with the evolution of the system shown for a
whole period. Larger and more spherical domains can be
observed in the middle of the system while, close to the
walls, thin domains follow the direction of the flow and are
subjected to a larger number of recombination and breakup
processes. In this case and alsd at5x 10 ° it is not pos-
sible to speak of dynamical scaling since domains are dis-
tributed on different scales. However, it is worth to observe
that the quantitie® andR, follow for a large interval of the
evolution a power-law behavior with exponent 2/3.

When the viscosity becomes larger, as for example in
cases 2,4,5 of Table |, the evolution of the system without
flow still corresponds to the inertial regime but the resulting
shorter relaxation tim&g makes the presence of the flow in

= 61000

1.2 —

1.0

0.8

log, R
----log, R
------ log, R
——— 2/3

SET 4, =10

mx

my

m

4.2

4.4

4.6

4.8

5.0

the bulk more effective with relevant consequences for the
kinetics of phase separation. In particular, we have observed
that the oscillatory flow can cause the interruption of the
segregation process. This phenomenon, also reported in ex-
perimentg 15,16], has been found in our simulations at dif-
ferent viscosities and in different growth regimes. An ex-
ample of this flow-induced interruption of growth is shown

in Fig. 7. The growth ofR,R,,R, becomes very slow at

logot~4.8. In Fig. 7 we also show a set of 4 configurations
in a period at this time. We observe that the terminal regions
of domains close to the walls follow with their movement the
FIG. 7. Four configurations and size domain evolution for a runggcijlation of the flow. The convection-induced movements

with parameter set 4 anfd=10"2. The configurations are taken at inhibit the domain growth due to other mechanisfdifu-
the four quarters of a period starting &t 60 000. The quantities g0 o inertial, and the system appears for a certain interval
R Ry, R are the horizontal, Vert.'cal‘ spherically averaged OIO'of time in a sort of elastic stationary state. The size of do-
main sizes averaged over each period. . . PP .

mains where this phenomenon is first observed during the

phase separation is found to be of the order of the average
log,oRy at logyt~4.2 is due to finite size effects which are deformation 2/{— 1) dtf D2y yey cos(2rft)=y(L
more relevant in the direction of the flow. The behavioRgf ~ —1)/8=T in all cases considered.
departs from the power law? at log;t~3.5. This anisot-
ropy is partially due to the presence of the walls which, even
without flow, can inhibit the growth of domains in the verti-
cal dimension at the bottom and at the top of the system. The In this section we consider the case where diffusion is the
morphology of the domains is also influenced by the sheaphysical mechanism mainly responsible for phase separation.
velocity which is larger compared with the hydrodynamic We will consider set 3 of parameters of Table [; the corre-
velocities in the region close to the walls, see, Fig. 1. Thesponding behavior oR(t) in quiescent conditions is shown

log, t

V. DIFFUSIVE GROWTH
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0.8 T T T T T T T T T 1.4
1.2 log R, L
0.6 log, R, -—-- Iong!y
———— |°910R, ....... |°910R
....... log R 1.04 e 1/3 h
—113 SET 3,f=10°
0.44 SET 3,f=10° 0.8
0.64 J
0.24
0.44 L
0.0 0.2 1
: 0.04 J
-0.2 - T T T T T /l T T T '. T T T T T T T T
05 00 05 10 15 20 25 3.0 35 40 45 05 10 15 20 25 30 35 40 45 50 55
log, .t log, ,t
2'0 L} L} L} L} L} 2'5 L} L} L} L} L} L} L} L} L} L}
Iong!_
log, R, -==- Iong!y
1.64 ----log,R, 4 204 |- log, R -
....... I°g1uR ———/3
———1/3 SET 3, f=10°
SET 3, f=10"
1.2 . 1.5 J
0.8 J 1.0 J
Ry d
[T Ea
) \l".“' .'.‘\-'L
0.44 .. 'ﬂ"vr/ . "o 0.5 -1
— \' ~S o > -
0.0 O'O'I'I'I'I'I'I'I'I'I'I'
' ' ' ' ' 26 28 30 32 34 36 38 40 42 44 456 48

20 25 30 35 40 45 50
log, t log, ;¢

FIG. 8. Evolution of the horizontal, vertical, and spherically averaged domain size in double logarithmic scale. The straight dashed lines
have the slope written in the insets.

in Fig. 3 with the value of the growth exponent given by phase separation with steady shear, striped domains almost
=0.35. aligned with the flow grow in the flow direction faster than in
As in the previous cases also here the growth becomethe other directions with an exponent larger than 1/3. In the
more anisotropic when the frequentylecreases. However, case of Fig. 9, the effective exponents fy and R, which
due to a higher value of the viscosiflg is smaller and the are quantities averaged over the whole system, will depend
effects of shear convection are more pronounced and obseren the ratio between the volumes of the two coexisting
able already foff =10 2. Indeed, at this frequency, and also phases.
at f=10"3, as it can be seen in Fig. 8, at late times in the By decreasing the frequency, the difference in the behav-
simulation,R, and R grow faster thart*’® with an effective  ior of R, andR, becomes more pronounced, as it can be seen
exponenta=0.39 atf=10"2 and «=0.54 atf=10"3 for  in Fig. 8 atf=10"* and f=10°. The four configurations
R(t). This behavior can be understood by looking at theshown in Fig. 10 for the first period of the evolution fat
configurations of the concentration field. In Fig. 9 it is shown=10"* exhibit elongated domains in the direction of the flow
as an example at time=2250 for f=10 3. Two different  similar to those observed in the case of steady shear. This
phases can be seen to coexist: lamellar ordered domaimxplains the big difference in the values measuredfpand
aligned with the flow close to the walls and the usual isotroR, in Fig. 8. Of course, also in this case the morphology of
pic pattern of phase separation in the middle of the systermthe domains is strictly related to the behavior of the horizon-
This coexistence is reflected in the shape of the structurtal velocity profiles shown in Fig. 1. We see that an almost
factor which is circular with two peaks &t=0 correspond- regular triangular velocity profile occurs when the ratio be-
ing to the horizontal lamellar domains. Then, as in diffusivetweenTg andT is of order 1. Finally, a quantitative evalua-
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5

{ = 2250

oy =f ﬂkxk C(k,t). (29)
Y (2m?2 7

We first discuss a peculiar behavior that we find for the
phase of the shear stress. We show in Fig. 11 the time evo-
lution of a,, for the same frequencies and parameters of Fig.
4. For convenience, the velocity on the upper wall is also
plotted in Fig. 11. We observe at the frequencies10 3
andf=10"* a phase opposition between the stress and the
velocity field imposed on the walls of the system. This un-
usual phase behavior can be explained by looking at the

FIG. 9. A configuration with corresponding structure factor at Velocity profiles of Fig. 1 where we see that the velocity does
t=2250 in a simulation with parameter set 3 ane10 2. In the ~ Never relax to the triangular profile but also assumes the
structure factor plok, (horizontal axi$ andk, (vertical axi$ vary ~ “wrong” sign in proximity of the walls before the jump to
in the intervall — 7/2,7/2]. the values imposed on the boundaries. Therefore, the stress
follows the sign of the real velocity field in the system and
this explains the “strange” phase behavior of the stress.

The above analysis is confirmed when we look in Fig. 12

tion of the growth at the late stages of the simulatiorf at

= _4 i 1
10  can be better done by averaging the behavioRef at the casé =10 * corresponding to the set 3 of parameters

and R, over each period. This gives the exponeniy of Table I. In this case almost triangular profiles are obtained
=0.65 andw,=0.19. These results should be compared Withsee Fi '1 and indeed the stressgis alrgost in phase with tr;e
the case of steady shear where a very slow growth is mea-_"’ 9. L P

. . VR velocity field on the wall$.
sured at late times in the shear direction. A more general feature of the behavior of the shear stress

can be observed in all the cases shown. We see that the initial
evolution of the stress is always characterized by the pres-
ence of a peak which can be eventually followed by other
In this section we consider the behavior of the shear stredarge oscillations. This is clear from the inset of Fig. 11 for
associated with the deformation of the domain pattern inf=10"2 where two overshoots modulated by small oscilla-
duced by the flow. The stress responsg is calculated as tions due to the velocity field can be observed. The phenom-
the second momentum of the structure factor: enon is enhanced dt=10 % and f=2x10 ° where the
time between successive peaks is of the same order of the
¢ — 5000 period of the applied flow and is also present fat5
———e— X 10~ 8 confirming that its origin is independent of the oscil-
lations of the flow. Indeed, for the latter mentioned fre-
quency, we observe overshootsaf, while the phase of the
applied flow has not changed sign. Similar phenomena are
§\ also observed in Fig. 12.

i% t Overshoots of the shear stress have been reported in ex-
periments of phase separation with steady stigét and
have also been found in simulatiof$2,13,38. The phe-

& nomenon is interpreted, as due to an initial stretching of the
domains in the direction of the flow to which it corresponds
ﬁ to an increase ofr,,. At a certain point the deformation
cannot be sustained by the surface tension and the domains
— start to break evolving in less stretched configurations. This
occurs in correspondence with a maximunogf,. Then the
system becomes more isotropic but, after that a minimum in

oy is reached, elastic energy is again stored due to the de-
o — formations and another overshoot®f, can be observed.

e The above considerations can be extended also to our case

- ———Eg with further complications due to the flow oscillations. In
e —————— particular, at frequencies of the order of the inverse of time
f

f——
4 . . . .
g A complete analysis of the viscoelastic properties of phase sepa-

rating binary mixtures, with the evaluation of the elastic and vis-
FIG. 10. Four configurations in a run with parameter set 3 andcous parts of the stress response, is beyond the purposes of this
f=10"%. work.

VI. STRESS BEHAVIOR
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FIG. 11. Behavior of the shear stress compared with the velocity on the upper wall. In the case with frefqagfcy the overall
behavior is shown in the inset and only the initial evolution is plotted in the main frame. The plot of the velocity is translated along the
vertical axis for graphical convenience; units are arbitrary for both the quantities.
between two overshoots of,,, the relaxation or the stretch- profile contribute to giving rise to a very rich phenomenol-
ing phenomena discussed above in the case of steady shem@y. In particular, the role of viscosity is fundamental be-
are greatly influenced by the flow oscillations. For example cause both the occurrence of inertial or diffusive growth and
in the casef =2x107° of Fig. 11, the relaxation after the the timeTg depend on the viscosity.
first maximum of o, occurs in correspondence with the  In this complex framework we found that the rafiq/T
change of sign of the imposed velocity and, therefore, on€an be used as a convenient parameter for measuring the
can think that the decreasing of the stress is mainly due teffects of the applied flow. At low viscosity and high fre-
the reversed sign of the deformations than to breaking proguency, for example, when the rafig; /T is larger than 1,
cesses in the domain pattern. This results in two very welthe effects of the shear are limited to a region close to the
shaped overshoots than those occurring in the dasb walls of the system, while in the bulk the growth is isotropic
x 10" ® which resembles what would occur with steady as in the case without applied flow. Actually, the most inter-
shear. esting phenomena can be observed when the above ratio be-

comes of order 1. Different phases, with lamellar order in
VIl. CONCLUSIONS regions close to the walls and isotropically oriented domains
in the central part of the system, have been observed to co-

In this work we have studied the behavior of phase sepaexist and evolve together in this case. For particular values of
rating binary mixtures subjected to oscillatory shear for dif-the frequency and viscosity we have also observed the inter-
ferent viscosities and frequencies of the applied flow. Thauption or slowing of the process of segregation: interfaces
existence of different physical mechanisms operating irare convected successively in opposite directions with the
phase separation, the anisotropic effects induced by the flowet effect of inhibiting any other growth mechanism, at least
and a finite relaxation tim@y for the triangular velocity for a significantly large time interval in simulations. Finally,
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6 T T T T T
shear stress 4 34 4
----- applied flow 3 ]
5] sET 3, 1=10° 2 1 2l , ~ ~ i
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FIG. 12. Shear stress and applied flow as in the previous figure, now for cases with parameter set 3. In the case with frequency
=102 the overall behavior is shown in the inset while in the main frame the evolution in the time int&6/800,20 00D is plotted. The
plot of the velocity is translated along the vertical axis for graphical convenience; units are arbitrary for both the quantities.

for values of the ratidl'r/T much less than 1, the domains ally, we have measured effective growth exponent in the

grow with lamellar morphology everywhere in the system asshear direction less than the expected values in the absence

in the case of steady flow. of flow which indicate a continuation of the phase separation
The question of the existence of power-law behavior foralso at the late times of our simulations. This could be an

the domain sizeR,,R, has a definite answer only in some indication for the case with steady shear suggesting a growth

cases. For sufficiently high frequencies the power-law behawef domains also at asymptotic times.

ior of the case without flow, inertial or diffusive depending We hope that our analysis of the segregation process in

on the viscosity, is generally recovered. At lower frequen-binary mixtures under oscillatory shear will stimulate a more

cies, when different scales for the size of domains are obsystematic experimental investigation of these systems. A

served at the same time in the system, it is not possible toatural continuation of this study will be its extension to the

speak of dynamical scaling; however, the quantifgsR,  three-dimensional case.

that we measure still give information about the growth be-

havior. We can note that in the limit of very low frequepues ACKNOWLEDGMENT
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