
PHYSICAL REVIEW E 67, 056105 ~2003!
Phase-separating binary fluids under oscillatory shear
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We apply the lattice Boltzmann methods to study the segregation of binary fluid mixtures under oscillatory
shear flow in two dimensions. The algorithm allows to simulate systems whose dynamics is described by the
Navier-Stokes and the convection-diffusion equations. The interplay between several time scales produces a
rich and complex phenomenology. We investigate the effects of different oscillation frequencies and viscosities
on the morphology of the phase separating domains. We find that at high frequencies the evolution is almost
isotropic with growth exponents 2/3 and 1/3 in the inertial~low viscosity! and diffusive ~high viscosity!
regimes, respectively. When the period of the applied shear flow becomes of the same order of the relaxation
time TR of the shear velocity profile, anisotropic effects are clearly observable. In correspondence with non-
linear patterns for the velocity profiles, we find configurations where lamellar order close to the walls coexists
with isotropic domains in the middle of the system. For particular values of frequency and viscosity it can also
happen that the convective effects induced by the oscillations cause an interruption or a slowing of the
segregation process, as found in some experiments. Finally, at very low frequencies, the morphology of
domains is characterized by lamellar order everywhere in the system resembling what happens in the case with
steady shear.

DOI: 10.1103/PhysRevE.67.056105 PACS number~s!: 05.70.Ln, 47.20.Hw, 47.11.1j, 83.10.Tv
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I. INTRODUCTION

The process of segregation in fluid mixtures is grea
affected by the presence of applied flows@1,2#. The domains
of the separating phases generally grow with anisotropic
terns that reflect the profile of the velocity field. In the ca
of polymer blends subjected to a simple shear flow string
structures are observed aligned along the flow direc
@3,4#. In more complex systems such as diblock copolym
melts with lamellar order@5# the question of the orientatio
of the interfaces is still a debated problem@6–8#. The pres-
ence of the flow has also less expected and obvious co
quences. For example, in phase separation of binary flu
while in the absence of flow the size of domains is distr
uted around a single average length scale@9#, when a shear
flow is applied, two typical lengths are observed for ea
direction @10–13#. Another peculiar case is that of lamella
sheared systems where the symmetry of dynamical sca
@9#, generally holding in ordering systems, is foreseen to
violated @8#. Related to the presence of the flow is also t
behavior of the stress response. The nonlinear characte
this response reflects the dynamical evolution of the dom
pattern and is of fundamental importance in many tech
logical applications@14#.

In this paper we study through numerical simulations
behavior of a symmetric phase separating binary mixt
subjected to an oscillatory shear flow@1#. Experiments on
this system show that in some cases the growth of
domains is interrupted for frequencies smaller than so
critical value @15,16#, while in other cases domains a
observed to grow on time scales much longer than
period of a single oscillation@17#. Available simulations of
this system@13,18,19# did not take into account the role o
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hydrodynamics or the existence of a finite time required
set a linear shear profile in a fluid system. This time, which
inversely proportional to the viscosity in a simple fluid@20#,
has a very important role in the case of oscillatory shear.
example, for sufficiently high frequencies, as it will b
shown later, this time is longer than the oscillation peri
and the linear profile will be never set in the system. T
will have relevant consequences for the evolution and
morphology of the domains of the separating phases. A
ally, a systematic study of the dependence of the gro
properties on the frequency of oscillations has not been d
in previous simulations also for the simplest cases with
hydrodynamics. One has also to observe that, differe
from the case with steady shear, due to the fact that
average strain is zero in one period of shearing, the effect
oscillatory shear on the morphology of domains are not
ways easy to understand intuitively.

The effects discussed above can be properly descr
only considering the full hydrodynamic equations for bina
mixtures. We have used a lattice Boltzmann method~LBM !
@21–23# to simulate the convection-diffusion and Navie
Stokes equations for a binary fluid. We have introduced
the lattice Boltzmann scheme, appropriate boundary co
tions for a shear flow and we have run our simulations s
tematically changing the frequency of oscillations for a lim
ited set of values of the viscosity. We have considered
two-dimensional case that is also useful for the compreh
sion of the three-dimensional case and has the advantag
being less demanding from the computational point of vie

The lattice Boltzmann simulations are based on the d
cretized Boltzmann equations for a set of distribution fun
tions related to the fluid densities and velocity. The densi
and momenta are conserved at each step of the simula
©2003 The American Physical Society05-1
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thus approximating the behavior of the hydrodynamic eq
tions for the fluid. The lattice Boltzmann methods have be
found to be very convenient for simulating quas
incompressible fluids on very long time scales, as it
needed in phase separation problems@24,25#. Another advan-
tage of the LBM is that, in the implementation of the meth
used in this paper@26#, a free energy can be introduced su
that the fluid relaxes to the equilibrium state determined
this free energy. This allows to know accurately the equil
rium properties of the coexisting phases whose growth
namics is under study.

Before presenting our results it is useful to summarize
known behavior of two-dimensional binary mixture
quenched into the ordered homogeneous phases in the
sence of flow. Once domains of the two phases are w
established, experimental and numerical data show that
growth is self-similar with the typical size of domains sca
ing with time asR(t);ta @9#. The growth exponenta de-
pends on the physical mechanism responsible for the p
separation. A simple scaling analysis of the Navier-Sto
and of the convection-diffusion equations shows that th
regimes can be found corresponding to the role played
hydrodynamic degrees of freedom@27,28#. At high viscosity
the domain growth is governed by a diffusive mechani
and the growth exponent isa51/3 @29#. When hydrodynam-
ics becomes relevant, the lawsR(t);t or R(t);t2/3 are ex-
pected depending on whether viscous forces or inertial
fects dominate, respectively@27,28#. In real systems,
however, the situation is more complex. The physical mec
nism responsible for the viscous growth is not operating
the two-dimensional case@30# and, indeed, this regime ha
never been observed in simulations@24#.

The effects of a steady shear flow on the growth la
previously discussed have been considered in many pa
In the diffusive case, analytical calculations based on a s
consistent approximation show that the typical size of
mains should grow in the direction normal to the flow as
the case without shear, while the growth exponent in the fl
direction is equal to that in the transverse direction a
mented of one@11,31#. This result cannot be easily checke
by numerical simulations due to the presence of finite s
effects that become very soon relevant in the direction of
flow affecting the value of the exponents@12#. The full prob-
lem with the Navier-Stokes and the convection-diffusi
equations has been considered in Refs.@25,32–36#, but also
in this case reliable results for the growth exponents are
yet available. Actually, the true existence of an asympto
growth regime in alternative with a stationary state with
finite transverse size is a question still to be clarified@37,25#.
On the other hand, morphological properties are reason
well understood. Domains are stretched by the flow and
induces a coagulation of domains in the flow direction b
also ruptures in the bicontinuous network@12,38#. As a re-
sult, domains assume the typical stringlike character with
already mentioned complication that the size of domain
distributed around two typical length scales for each dir
tion.

The lattice Boltzmann scheme used in this paper is
scribed in the following section. Due to small variations w
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respect to previous LBM@39#, details on the method and o
the implementation are given for convenience of the rea
The rest of the paper is divided as follows. In Sec. III, w
illustrate our strategy for the choice of the parameters use
the simulations; we also discuss the relevant time scales
the system considered. In Sec. IV, we show results of sim
lations where the growth is dominated by inertial effec
while the diffusive case is treated in Sec. V. In Sec. VI, w
consider the behavior of the shear stress, and we draw
conclusions in Sec. VII.

II. THE MODEL

Our simulations are based on the lattice Boltzma
scheme developed by Orlandiniet al. @39# and Swift et al.
@40#. In this scheme the equilibrium properties of the syst
can be controlled by introducing a free energy which ent
properly into the lattice Boltzmann model.

A. The lattice Boltzmann scheme

The lattice Boltzmann scheme is based on theD2Q9 lat-
tice: A square lattice is used in which each site is connec
with nearest and next-to-nearest neighbors. The horizo
and vertical links have lengthDx, the diagonal linksA2Dx,
Dx being the space step. Two sets of distribution functio
f i(r ,t) andgi(r ,t) are defined on each lattice siter at each
time t. Each of them is associated with a velocity vectorei .
DefinedDt as the simulation time step, the quantitieseiDt
are constrained to be lattice vectors so thatuei u5Dx/Dt[c
for i 51 ~east direction!, 2 ~north!, 3 ~west!, 4 ~south! and
uei u5A2c for i 55 ~north east!, 6 ~north west!, 7 ~south
west!, 8 ~south east!. Two functionsf 0(r ,t) andg0(r ,t), cor-
responding to the distribution components that do not pro
gate (e050), are also taken into account. They evolve duri
the time stepDt according to a single relaxation-tim
Boltzmann equation@41,42#:

f i~r1eiDt,t1Dt !2 f i~r ,t !52
1

t
@ f i~r ,t !2 f i

eq~r ,t !#,

~1!

gi~r1eiDt,t1Dt !2gi~r ,t !52
1

tw
@gi~r ,t !2gi

eq~r ,t !#,

~2!

wheret and tw are independent relaxation parameters, a
f i

eq(r ,t) andgi
eq(r ,t) are local equilibrium distribution func-

tions. The distribution functions are related to the total de
sity n, to the fluid momentumnv, and to the density differ-
encew, through

n5(
i

f i , nv5(
i

f iei , w5(
i

gi . ~3!

These quantities are locally conserved in any collis
process and, therefore, we require that the local equilibr
distribution functions fulfill the equations
5-2
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(
i

~ f i
eq2 f i !50⇒(

i
f i

eq5n,

(
i

~gi
eq2gi !50⇒(

i
gi

eq5w,

(
i

~ f i
eq2 f i !ei50⇒(

i
f i

eqei5nv. ~4!

Following Refs. @39,40#, the higher moments of the loca
equilibrium distribution functions are defined so that the co
tinuum equations pertinent to a binary fluid mixture can
obtained and the equilibrium thermodynamic properties
the system can be controlled. We define

(
i

f i
eqeiaeib5c2Pab1nvavb , ~5!

(
i

gi
eqeia5wva , ~6!

(
i

gi
eqeiaeib5c2GDmdab1wvavb , ~7!

wherePab is the pressure tensor,Dm is the chemical poten
tial difference between the two fluids, andG is a coefficient
related to the mobility of the fluid. We want to stress that
are considering a mixture with the two fluids having t
same mechanical properties and, in particular, the same
cosity. Constraint~6! expresses the fact that the two fluid
have the same velocity. The local equilibrium distributi
functions can be expressed as an expansion at the se
order in the velocityv @39,40#:

f 0
eq5A01C0v2,

f i
eq5AI1BIvaeia1CIv

21DIvavbeiaeib

1GI ,abeiaeib , i 51,2,3,4,

f i
eq5AII 1BII vaeia1CII v

21DII vavbeiaeib

1GII ,abeiaeib , i 55,6,7,8, ~8!

and similarly for thegi
eq , i 50, . . . ,8.Relations~4! and~5!

can be used to fix the coefficients of these expansions
suitable choice of the coefficients in expansions~8! is

A05n220AII , AI54AII , AII 5
Pabdab

24
, ~9!

BI54BII , BII 5
n

12c2
, ~10!

C052
2n

3c2
, CI54CII , CII 52

n

24c2
, ~11!
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DI54DII , DII 5
n

8c4
, ~12!

GI ,ab54GII ,ab , GII ,ab5
Pab2 1

2 Pssdab

8c2
. ~13!

The expansion coefficients for thegi
eq can be obtained from

the previous ones with the formal substitutionsn→w and
Pab→GDmdab . The quantitiesPab andDm, which appear
in the coefficients of the equilibrium distribution function
can be calculated from a suitable free energy.

B. The equilibrium properties

The free-energy functional used in the present study i

F5E dr F1

3
n ln n1

a

2
w21

b

4
w41

k

2
~“w!2G . ~14!

The term inn gives rise to a positive background pressu
and does not affect the phase behavior; it is required in
lattice Boltzmann approach, as it will be seen later. T
terms inw in the free-energy densityf (n,w) correspond to
the usual Ginzburg-Landau free energy typically used
studies of phase separation@28#. The polynomial terms are
related to the bulk properties of the fluid. While the para
eterb is always positive, the sign ofa distinguishes between
a disordered (a.0) and a segregated mixture (a,0), where
two pure phases withw56A2a/b coexist. We will con-
sider quenches into the coexistence region witha,0 andb
52a so that the equilibrium values for the order parame
are w561. The gradient term is related to the interfac
properties. The equilibrium profile between the two coexi
ing bulk phases isw(x)5tanh2x/j giving @43# a surface ten-
sion

s5
2

3
A22ak ~15!

and an interfacial width

j52A2k

2a
. ~16!

The thermodynamic properties of the fluid follow from
the free energy~14!. The chemical potential difference be
tween the two fluids is given by

Dm5
dF
dw

5aw1bw32k¹2w. ~17!

The pressure is a tensorPab since interfaces in the fluid ca
exert nonisotropic forces@44#. The diagonal partpo can be
calculated from Eq.~14! by using thermodynamics relations
5-3
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po5n
dF
dn

1w
dF
dw

2 f ~n,w!5
1

3
n1

a

2
w21

3b

4
w4

2kw~¹2w!2
k

2
~¹w!2. ~18!

In deriving the pressure tensorPab , one has to ensure tha
Pab obeys the condition of mechanical equilibrium]aPab
50 @45#. A suitable choice is

Pab5podab1k]aw]bw. ~19!

The presence of the term depending onn in the free-
energy density allows to recover the known results of
D2Q9 lattice Boltzmann model for a single fluid. Indee
when a5b5k5w50, expansion coefficients~9!–~13! be-
come those of theD2Q9 model@46# and the pressure tenso
~19! reduces to the scalarp5(c2/3)n, where we have also
included the factorc2 appearing in the rhs of Eq.~5!. This is
the pressure for an ideal gas with speed of soundcs5c/A3
@46#. Let us observe that the value of the numerical facto
front of n ln n in the free energy depends on the topology
the lattice and the spatial dimensions@47#.

It has been shown in Refs.@39,40#, using a Chapman
Enskog expansion@48#, that the above described lattice Bo
zmann scheme simulates, at second order inDt, the continu-
ity, the quasi-incompressible Navier-Stokes, and
convection-diffusion equations with the kinematic viscos
n and the macroscopic mobilityQ given by

n5Dt
c2

3
~t2 1

2 !, Q5GDtc2~tw2 1
2 !. ~20!

C. The shear boundary condition

In order to enforce a shear flow on the system, we h
used the following scheme. We assume that the shear flo
directed along the horizontal direction. Boundary walls a
placed on the upper and lower rows of sites. Let us cons
the upper wall~similar considerations apply to the lowe
wall!. After the propagation the distribution functionsf 0(t),
f 1(t), f 5(t), f 2(t), f 6(t), and f 3(t) are known on each site
while f 7(t), f 4(t), f 8(t) are not. One uses Eqs.~3! to deter-
mine them as well asn. Requiring that the wall velocities
wx,t5g0(L21)/2cos(2pft), wy,t50 are imposed to the
fluid, we can write

f 7~ t !1 f 4~ t !1 f 8~ t !5n2@ f 0~ t !1 f 1~ t !1 f 5~ t !1 f 2~ t !

1 f 6~ t !1 f 3~ t !#,

f 8~ t !2 f 7~ t !5ng0

L21

2c
cos~2p f t !

2@ f 1~ t !2 f 3~ t !1 f 5~ t !2 f 6~ t !#,

f 7~ t !1 f 4~ t !1 f 8~ t !5 f 5~ t !1 f 2~ t !1 f 6~ t !, ~21!
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whereL is the lattice size,g0 is the amplitude of the shea
rate, andf is the frequency of the oscillatory shear. Cons
tency of Eqs.~21! gives

n5 f 0~ t !1 f 1~ t !1 f 3~ t !12@ f 2~ t !1 f 6~ t !1 f 5~ t !#. ~22!

The system of Eqs.~21! reduces to two equations with thre
unknown variables. To close the system of equations
bounceback rule@49,50# is adopted for the distribution func
tions normal to the boundary. This corresponds to impos
that f 4(t)5 f 2(t). In order to preserve correctly mass cons
vation we add a further constraint. Mass will be conserve
the total densityn on each site is equal to the quantityn̂
given by the sum

n̂~ t,t2Dt !

5 f 0~ t2Dt !1 f 5~ t2Dt !1 f 2~ t2Dt !1 f 6~ t2Dt !,

1 f 1~ t !1 f 5~ t !1 f 2~ t !1 f 6~ t !1 f 3~ t !, ~23!

where quantities at time (t2Dt) refer to the previous time
step and have not been propagated over the lattice. In o
to impose the constraint that on all the boundary sitesn

5n̂, we have to introduce an independent variable in
system of equations. We have chosenf 0(t) since it does not
propagate@34#. The solutions of the system of Eqs.~21! and
n5n̂ are

f 0~r ,t !5n̂2@ f 1~r ,t !1 f 3~r ,t !#22@ f 2~r ,t !1 f 5~r ,t !

1 f 6~r ,t !#,

f 4~r ,t !5 f 2~r ,t !,

f 8~r ,t !5 f 6~r ,t !2
1

2
@ f 1~r ,t !2 f 3~r ,t !#

1
1

2
ng0

L21

2c
cos~2p f t !,

f 7~r ,t !5 f 5~r ,t !1
1

2
@ f 1~r ,t !2 f 3~r ,t !#

2
1

2
ng0

L21

2c
cos~2p f t !. ~24!

A similar treatment is required for thegi(r ,t). With this
choice the proper momentum at the boundary is achieved
this point the collision step is applied to all sites, includin
the boundary ones. By this procedure, once the system
been initialized, the application of the propagation and co
sion steps goes on preserving mass and momentum co
vations and implementing the correct velocity values on
boundaries, as it has also been verified numerically@34#.

Finally, we also require that the two fluids, which, as a
ready stated, are assumed to have the same dynamic
static properties, have a neutral wetting with walls. This c
be enforced at each time step by the condition
5-4
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TABLE I. Parameters used in simulations and corresponding time scales. The shear time scaleTS is equal
in all runs to 200.

Set Dt TR TD T0 2a,b k t G s

1 0.2 189720 1224.8 4815.8 1.25231024 831025 0.5210 40 9.4331025

2 0.2 25638 1224.8 1.953106 1.25231024 831025 0.6554 40 9.4331025

3 0.2 2563.8 1224.8 1.953109 1.25231024 831025 2.0540 40 9.4331025

4 1 13280 5895.5 2024.9 1.04231022 6.6731023 2 0.5 7.8631023

5 1 13280 7863.4 3599.9 7.81331023 531023 2 0.5 5.8931023
th

th

ng-
he
e

of
m•“w50, ~25!

where m is a unit vector normal to the wall@51,52#. This
corresponds to fixing the gradient of the densityw on the
walls so that the angle formed by the interfaces between
two fluids with the walls stays at a constant value ofp/2 rad.
This completes the description of the model used in
present work.
05610
e

e

III. PARAMETER SELECTION AND RELEVANT
TIME SCALES

We have studied the effects of the applied flow by cha
ing the frequency of the oscillations at fixed values of t
parametersa,b,k,t,G. This has been systematically don
for the cases reported in Table I. We have kept the ratiok/a
fixed in such a way that the interfacial width is always
about 3 lattice spacings. We fixedtw51 with G controlling
alf, first,
FIG. 1. Horizontal velocity profiles taken at the central vertical line of the system. The profiles are recorded at the beginning, h
and third quarters of the period considered.
5-5
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the value of the macroscopic mobility~20!. The amplitude of
the shear rate is equal in all runs to the valueg050.005. The
size of the lattice, if not otherwise stated, isL5256. In
the following all the quantities are measured in units ofDx
andDt.

In the absence of shear, as observed in Refs.@25,53#, the
behavior at late times of a viscous phase separating bi
mixture can be described in terms of adimensional temp
and spatial quantities. Indeed, from the set of macrosco
parametersn,s,n, it is possible to define only one unit o
length (L05nn2/s) and one of time (T05n2n3/s2).1 Then,
in a regime of dynamical scaling with the size of doma
distributed around a single typical length, when diffusion
negligible, it is possible to build up only one spatial and o
temporal adimensional variables. These variables have b
used in comparing results of simulations performed with d
ferent parameters and methods@25,53#.

The same use of adimensional variables can be don
the case of very high viscosity when the evolution equati
reduce to a convection-diffusion equation.TD5j3/(Qs) is
the time scale for diffusion@28#.

In the case with oscillatory shear the situation is mo
complex because various temporal scales can be defined
in general, one does not expect dynamical scaling. Due
these reasons we have preferred to show our results in t
of original quantities. However, it remains useful to consid
the relevant time scales because they can give informat
on the physical mechanisms responsible of phase separ
and on the role of the applied flow.

We have already defined the quantitiesT0 andTD which
do not depend on the applied flow. Then there are the t
TS5g0

21, related to the amplitude of the oscillating she

1These expressions do not depend on the spatial dimension.

FIG. 2. The evolution of the horizontal profile for the case a
at the times reported in the inset. The main frame is a magnifica
of the profiles in the region close to the upper wall.
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and the periodT5 f 21 of a single oscillation. The ratio
T0 /TS can be interpreted as an indicator of the relative r
evance of hydrodynamic and imposed velocities. Finally,
consider the quantityTR5L2/(np2) which is the leading
contribution to the relaxation time for a steady shear pro
in a simple fluid@20#. This time can be taken as indicative o
the relaxational velocity processes also in the case of a p
separating binary mixture@34#. In Table I the time scales
corresponding to the sets of parameters indicated are
reported.

The relevance of the ratioTR /T for the problem consid-
ered in this paper appears clearly from Fig. 1. Here the h
zontal velocityvx profiles for the vertical cross section in th
middle of the system are reported at a late stage of sim
tions for cases 1 and 3 of Table I and for two different fr
quencies. We checked that these results are independe
the particular vertical line considered. For each case the
locity profile is plotted at the quarters of one period. For t
set of parameters 1 withf 51023 the horizontal velocity in-
duced by the shear is very small in the bulk of the syst
and comparable with the average of the modulus of the v
tical velocity vy . With the same parameters, when the fr
quency decreases tof 51024, the complex nonmonotonic
behavior of the horizontal velocity is more evident.vx is
much larger than hydrodynamic velocities in a relevant p
tion of the system close to the walls where it also assum

n

FIG. 3. Evolution of the domain size in cases without appli
flow with periodic boundary conditions. The size of the lattice us
in these simulations isL5512.
5-6
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FIG. 4. Evolution of the horizontal, vertical, and spherically averaged size of domains in double logarithmic scale. The straigh
lines have the slope written in the insets.
pe
fo
th
te
e

ob
o

re
es
on
th
a

m
e
o

e

n-
ur
ot
w

of
the

the
re-
is
in-

ns

the
w

opposite directions to those imposed by the walls. This
culiar pattern of the velocity profiles has consequences
the behavior of the stress, as it will be seen later. When
viscosity becomes higher, like for the other set of parame
used in Fig. 1, the relaxation timeTR decreases. Then, for th
same frequencies, the velocity in the bulk of the system
larger and almost triangular oscillating profiles can be
served atf 51024. We have also checked that each set
four profiles of Fig. 1 is typical for the parameters conside
in the sense that only small variations in the pattern of th
profiles, probably due to the evolving interface configurati
can be observed during the simulation. Figure 2 shows
velocity profile at the same phase of four different periods
initial and late stages of the simulation with set 1 of para
eters atf 51023. Small quantitative changes can be observ
in the region close to the walls, while the general shape
the profile always remains the same.

Finally, we consider the question of the stability of th
lattice Boltzmann scheme used in this work. As observed
Ref. @53#, this lattice Boltzmann scheme is intrinsically u
stable. At unpredictable times of the simulation press
waves grow up indefinitely in very few iterations making n
possible the continuation of the simulation. As expected,
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saw that this problem becomes more serious whent tends to
the limit 1/2. The problem of stability is connected to that
guaranteeing as much as possible the incompressibility of
fluid. Compressibility errors, which go like (v/cs)

2 @54#, can
be reduced by either increasingcs , which would require to
reduceDt, or decreasing the magnitude ofa,b,k @53#. We
have followed a mixed strategy by keepingDx51 and
changing the values ofDt as reported in Table I. In this way
we were able to run simulations long enough to study
phase separation of binary mixtures in different growth
gimes implicitly assuming that the evolution of the system
not affected by the possible occurrence of the numerical
stability. A comment to the results of Ref.@53# is that the
introduction of walls for the shear boundary conditio
makes worst the stability properties of the LB scheme.

IV. INERTIAL ORDERING

In two-dimensional quiescent systems, as discussed in
Introduction, two growth regimes with different power-la
behaviors for the average size of domainsR(t) have been
5-7
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clearly identified.2 In this section we will consider the effect
of the oscillatory shear on the case of phase separation dr
by inertial growth. We will mostly refer to case 1 of Table
for which, in the absence of flow, the behavior ofR(t) is
shown in Fig. 3. The quantityR(t) has been calculated as th
first momentum of the structure factor, that is,

R~ t !5

E dk C~k,t !

E dk k C~k,t !

, ~26!

whereC(k,t) is the spherical average of the structure fac

C~kW ,t !5^w~kW ,t !w~2kW ,t !&, ~27!

and ^•& is the average over different histories. We found
growth exponenta50.6260.02;3 in the following, all the
estimates of the growth exponenta are affected by the sam
error60.02. The small discrepancy from the expected va
a52/3 typical for the inertial growth can be attributed to
small violation of dynamical scaling@55#.

2Growth regimes with exponent 1/2 have also been reported; t
existence at asymptotic times is still under debate. For a discus
see, Ref.@24#.

3For a more accurate measure of this exponent we have
larger lattices withL5512.

FIG. 5. Configuration of domains with the corresponding str
ture factor at two times in a run with parameter set 1 of parame
at the frequencyf 51023. The variableskx ~horizontal axis! andky

~vertical axis! vary in the interval @25/16p,5/16p# and
@2p/8,p/8# at timest51650 andt55900, respectively.
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The effects of the oscillatory shear on the growth of t
domain size for case 1 of Table I can be seen in the pane
Fig. 4 which summarizes our results for a range of frequ
cies from f 51023 up to f 5531026. We measure the
spherical averageR(t), the domain size in the flow direction

Rx~ t !5

E dkWC~kW ,t !

E dkW ukxuC~kW ,t !

~28!

and the analogRy for the shear direction. The valuef
51023 is the highest frequency where an anisotropic beh
ior can be observed.R and Rx evolve with an exponen
which is equal to 2/3; the change of the slope of log10R and

ir
n,

ed

-
rs

FIG. 6. Four configurations and corresponding velocity profi
in a run with periodT550 000.
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log10Rx at log10t;4.2 is due to finite size effects which ar
more relevant in the direction of the flow. The behavior ofRy
departs from the power lawt2/3 at log10t;3.5. This anisot-
ropy is partially due to the presence of the walls which, ev
without flow, can inhibit the growth of domains in the vert
cal dimension at the bottom and at the top of the system.
morphology of the domains is also influenced by the sh
velocity which is larger compared with the hydrodynam
velocities in the region close to the walls, see, Fig. 1. T

FIG. 7. Four configurations and size domain evolution for a
with parameter set 4 andf 51023. The configurations are taken a
the four quarters of a period starting att560 000. The quantities
Rmx ,Rmy ,Rm are the horizontal, vertical, spherically averaged d
main sizes averaged over each period.
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slightly anisotropic evolution atf 51023 can be illustrated
from the two configurations shown in Fig. 5 with the corr
sponding structure factors. The circular shape of the struc
factor att51650, whose radius is of the order of the inver
of R(t), reflects the isotropic configuration of the concent
tion field at this time. Att55900 the slight prevalence of th
peaks atkx50 corresponds to the presence of a recogniza
amount of domains aligned with the flow close to the wa
In the following of this simulation the almost isotropic cha
acter is conserved as it has been checked looking at the
figurations.

At the frequencyf 51024 the morphology of domains is
more affected by the applied flow due to a bigger region
the system where the horizontal velocity is significan
larger than the typical hydrodynamic velocities measu
along the vertical direction, see, Fig. 1. As a consequen
lamellas can be observed close to the walls while the gro
keeps a more isotropic character in the middle of the syst
Figure 6, at the frequencyf 5231025, gives an example of
this behavior with the evolution of the system shown for
whole period. Larger and more spherical domains can
observed in the middle of the system while, close to
walls, thin domains follow the direction of the flow and a
subjected to a larger number of recombination and brea
processes. In this case and also atf 5531026 it is not pos-
sible to speak of dynamical scaling since domains are
tributed on different scales. However, it is worth to obser
that the quantitiesR andRy follow for a large interval of the
evolution a power-law behavior with exponent 2/3.

When the viscosity becomes larger, as for example
cases 2,4,5 of Table I, the evolution of the system with
flow still corresponds to the inertial regime but the resulti
shorter relaxation timeTR makes the presence of the flow
the bulk more effective with relevant consequences for
kinetics of phase separation. In particular, we have obser
that the oscillatory flow can cause the interruption of t
segregation process. This phenomenon, also reported in
periments@15,16#, has been found in our simulations at di
ferent viscosities and in different growth regimes. An e
ample of this flow-induced interruption of growth is show
in Fig. 7. The growth ofR,Rx ,Ry becomes very slow a
log10t;4.8. In Fig. 7 we also show a set of 4 configuratio
in a period at this time. We observe that the terminal regio
of domains close to the walls follow with their movement t
oscillation of the flow. The convection-induced movemen
inhibit the domain growth due to other mechanisms~diffu-
sion or inertial!, and the system appears for a certain inter
of time in a sort of elastic stationary state. The size of d
mains where this phenomenon is first observed during
phase separation is found to be of the order of the aver
deformation 2/(L21)*0

T/4dt*0
(L21)/2dyg0y cos(2pft)5g0(L

21)/8pT in all cases considered.

V. DIFFUSIVE GROWTH

In this section we consider the case where diffusion is
physical mechanism mainly responsible for phase separa
We will consider set 3 of parameters of Table I; the cor
sponding behavior ofR(t) in quiescent conditions is show

n

-
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FIG. 8. Evolution of the horizontal, vertical, and spherically averaged domain size in double logarithmic scale. The straight das
have the slope written in the insets.
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in Fig. 3 with the value of the growth exponent given bya
50.35.

As in the previous cases also here the growth beco
more anisotropic when the frequencyf decreases. Howeve
due to a higher value of the viscosity,TR is smaller and the
effects of shear convection are more pronounced and obs
able already forf 51022. Indeed, at this frequency, and als
at f 51023, as it can be seen in Fig. 8, at late times in t
simulation,Rx andR grow faster thant1/3 with an effective
exponenta50.39 at f 51022 and a50.54 at f 51023 for
R(t). This behavior can be understood by looking at t
configurations of the concentration field. In Fig. 9 it is show
as an example at timet52250 for f 51023. Two different
phases can be seen to coexist: lamellar ordered dom
aligned with the flow close to the walls and the usual isot
pic pattern of phase separation in the middle of the syst
This coexistence is reflected in the shape of the struc
factor which is circular with two peaks atkx50 correspond-
ing to the horizontal lamellar domains. Then, as in diffus
05610
es

rv-

e
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re

phase separation with steady shear, striped domains al
aligned with the flow grow in the flow direction faster than
the other directions with an exponent larger than 1/3. In
case of Fig. 9, the effective exponents forRx andR, which
are quantities averaged over the whole system, will dep
on the ratio between the volumes of the two coexist
phases.

By decreasing the frequency, the difference in the beh
ior of Rx andRy becomes more pronounced, as it can be s
in Fig. 8 at f 51024 and f 51025. The four configurations
shown in Fig. 10 for the first period of the evolution atf
51024 exhibit elongated domains in the direction of the flo
similar to those observed in the case of steady shear.
explains the big difference in the values measured forRx and
Ry in Fig. 8. Of course, also in this case the morphology
the domains is strictly related to the behavior of the horizo
tal velocity profiles shown in Fig. 1. We see that an alm
regular triangular velocity profile occurs when the ratio b
tweenTR andT is of order 1. Finally, a quantitative evalua
5-10
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tion of the growth at the late stages of the simulation af
51024 can be better done by averaging the behavior ofRx
and Ry over each period. This gives the exponentsax
50.65 anday50.19. These results should be compared w
the case of steady shear where a very slow growth is m
sured at late times in the shear direction.

VI. STRESS BEHAVIOR

In this section we consider the behavior of the shear st
associated with the deformation of the domain pattern
duced by the flow. The stress responsesxy is calculated as
the second momentum of the structure factor:

FIG. 9. A configuration with corresponding structure factor
t52250 in a simulation with parameter set 3 andf 51023. In the
structure factor plotkx ~horizontal axis! andky ~vertical axis! vary
in the interval@2p/2,p/2#.

FIG. 10. Four configurations in a run with parameter set 3 a
f 51024.
05610
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sxy5E dkW

~2p!2
kxkyC~kW ,t !. ~29!

We first discuss a peculiar behavior that we find for t
phase of the shear stress. We show in Fig. 11 the time e
lution of sxy for the same frequencies and parameters of F
4. For convenience, the velocity on the upper wall is a
plotted in Fig. 11. We observe at the frequenciesf 51023

and f 51024 a phase opposition between the stress and
velocity field imposed on the walls of the system. This u
usual phase behavior can be explained by looking at
velocity profiles of Fig. 1 where we see that the velocity do
never relax to the triangular profile but also assumes
‘‘wrong’’ sign in proximity of the walls before the jump to
the values imposed on the boundaries. Therefore, the s
follows the sign of the real velocity field in the system a
this explains the ‘‘strange’’ phase behavior of the stress.

The above analysis is confirmed when we look in Fig.
at the casef 51024 corresponding to the set 3 of paramete
of Table I. In this case almost triangular profiles are obtain
see, Fig. 1, and indeed the stress is almost in phase with
velocity field on the walls.4

A more general feature of the behavior of the shear str
can be observed in all the cases shown. We see that the in
evolution of the stress is always characterized by the p
ence of a peak which can be eventually followed by oth
large oscillations. This is clear from the inset of Fig. 11 f
f 51023 where two overshoots modulated by small oscil
tions due to the velocity field can be observed. The pheno
enon is enhanced atf 51024 and f 5231025 where the
time between successive peaks is of the same order of
period of the applied flow and is also present atf 55
31026 confirming that its origin is independent of the osc
lations of the flow. Indeed, for the latter mentioned fr
quency, we observe overshoots ofsxy while the phase of the
applied flow has not changed sign. Similar phenomena
also observed in Fig. 12.

Overshoots of the shear stress have been reported in
periments of phase separation with steady shear@56# and
have also been found in simulations@12,13,38#. The phe-
nomenon is interpreted, as due to an initial stretching of
domains in the direction of the flow to which it correspon
to an increase ofsxy . At a certain point the deformation
cannot be sustained by the surface tension and the dom
start to break evolving in less stretched configurations. T
occurs in correspondence with a maximum ofsxy . Then the
system becomes more isotropic but, after that a minimum
sxy is reached, elastic energy is again stored due to the
formations and another overshoot ofsxy can be observed.

The above considerations can be extended also to our
with further complications due to the flow oscillations.
particular, at frequencies of the order of the inverse of ti

4A complete analysis of the viscoelastic properties of phase s
rating binary mixtures, with the evaluation of the elastic and v
cous parts of the stress response, is beyond the purposes o
work.
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FIG. 11. Behavior of the shear stress compared with the velocity on the upper wall. In the case with frequencyf 51023 the overall
behavior is shown in the inset and only the initial evolution is plotted in the main frame. The plot of the velocity is translated alo
vertical axis for graphical convenience; units are arbitrary for both the quantities.
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between two overshoots ofsxy , the relaxation or the stretch
ing phenomena discussed above in the case of steady
are greatly influenced by the flow oscillations. For examp
in the casef 5231025 of Fig. 11, the relaxation after th
first maximum of sxy occurs in correspondence with th
change of sign of the imposed velocity and, therefore,
can think that the decreasing of the stress is mainly du
the reversed sign of the deformations than to breaking p
cesses in the domain pattern. This results in two very w
shaped overshoots than those occurring in the casef 55
31026 which resembles what would occur with stea
shear.

VII. CONCLUSIONS

In this work we have studied the behavior of phase se
rating binary mixtures subjected to oscillatory shear for d
ferent viscosities and frequencies of the applied flow. T
existence of different physical mechanisms operating
phase separation, the anisotropic effects induced by the fl
and a finite relaxation timeTR for the triangular velocity
05610
ear
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profile contribute to giving rise to a very rich phenomeno
ogy. In particular, the role of viscosity is fundamental b
cause both the occurrence of inertial or diffusive growth a
the timeTR depend on the viscosity.

In this complex framework we found that the ratioTR /T
can be used as a convenient parameter for measuring
effects of the applied flow. At low viscosity and high fre
quency, for example, when the ratioTR /T is larger than 1,
the effects of the shear are limited to a region close to
walls of the system, while in the bulk the growth is isotrop
as in the case without applied flow. Actually, the most int
esting phenomena can be observed when the above ratio
comes of order 1. Different phases, with lamellar order
regions close to the walls and isotropically oriented doma
in the central part of the system, have been observed to
exist and evolve together in this case. For particular value
the frequency and viscosity we have also observed the in
ruption or slowing of the process of segregation: interfa
are convected successively in opposite directions with
net effect of inhibiting any other growth mechanism, at le
for a significantly large time interval in simulations. Finall
5-12
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FIG. 12. Shear stress and applied flow as in the previous figure, now for cases with parameter set 3. In the case with fref
51023 the overall behavior is shown in the inset while in the main frame the evolution in the time interval@10 000,20 000# is plotted. The
plot of the velocity is translated along the vertical axis for graphical convenience; units are arbitrary for both the quantities.
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for values of the ratioTR /T much less than 1, the domain
grow with lamellar morphology everywhere in the system
in the case of steady flow.

The question of the existence of power-law behavior
the domain sizeRx ,Ry has a definite answer only in som
cases. For sufficiently high frequencies the power-law beh
ior of the case without flow, inertial or diffusive dependin
on the viscosity, is generally recovered. At lower freque
cies, when different scales for the size of domains are
served at the same time in the system, it is not possibl
speak of dynamical scaling; however, the quantitiesRx ,Ry
that we measure still give information about the growth b
havior. We can note that in the limit of very low frequenci
we have not found any signal of a stationary state with
size of domains reaching or tending to a finite value. Ac
-

ys

s.

e,

.
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ally, we have measured effective growth exponent in
shear direction less than the expected values in the abs
of flow which indicate a continuation of the phase separat
also at the late times of our simulations. This could be
indication for the case with steady shear suggesting a gro
of domains also at asymptotic times.

We hope that our analysis of the segregation proces
binary mixtures under oscillatory shear will stimulate a mo
systematic experimental investigation of these systems
natural continuation of this study will be its extension to t
three-dimensional case.
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